Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction
نویسندگان
چکیده
The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid-high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years.
منابع مشابه
THE CAUSE OF BIOMASS EXTINCTION AT THE FRASNIAN-FAMENNIAN BOUNDARY, THE KERMAN PROVINCE SOUTHEASTERN, CENTRAL IRAN
About 35 samples were collected from lower and upper parts of the proposed Frasnianamennian boundary in three sections of Upper Devonian marine sediments of the Kerman province. The biostratigraphical and geochemical studies indicate that about 45% extinction of brachiopods probably caused by the Frasnian-Famennian bioevents, which is slightly higher than thr rate of Devonian-Carboniferous exti...
متن کاملGlobal change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events
Events of the Paleocene-Eocene boundary provide the clearest example to date of how a tectonic event may have global climatic consequences. Recent advances permit well-constrained stratigraphic determination of several events that occurred at that boundary, in chron C24R: a many-fold increase in sea-floor hydrothermal activity, a global warming, a reduction in the intensity of atmospheric circu...
متن کاملThe Lilliput Effect in Colonial Organisms: Cheilostome Bryozoans at the Cretaceous–Paleogene Mass Extinction
Consistent trends towards decreasing body size in the aftermath of mass extinctions--Lilliput effects--imply a predictable response among unitary animals to these events. The occurrence of Lilliput effects has yet to be widely tested in colonial organisms, which are of particular interest as size change may potentially occur at the two hierarchical levels of the colony and the individual zooids...
متن کاملDetection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains)
.Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains) Abstract One of the most important challenges for the human communities is Global Warming. This vital problem affected by Climate Change and corresponding effects. Thus this article attempted to assess the trend of real climate variables from syno...
متن کاملK-Pg extinction: Reevaluation of the heat-fire hypothesis
[1] The global debris layer created by the end-Cretaceous impact at Chicxulub contained enough soot to indicate that the entire terrestrial biosphere had burned. Preliminary modeling showed that the reentry of ejecta would have caused a global infrared (IR) pulse sufficient to ignite global fires within a few hours of the Chicxulub impact. This heat pulse and subsequent fires explain the terres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016